EXAM 3 (100pts)

November 8, 2013

Name ______

(25pts) 1.

a) Determine the values of R_B and the dc voltage source V_{BB} for the circuit "b" to be equivalent to circuit "a". (Pay attention to signs)

$$R_B = 20K$$
 (4pts)

$$V_{BB} = -//$$
 (5pts)

b) Determine I_E , I_B , I_C and V_B if $\beta=49$ and $|V_{BE}|=0.6V$.

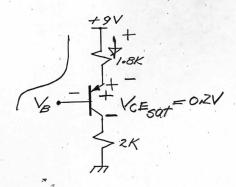
$$I_{E} = /mA$$

$$I_{B} = O.O.Z.mA$$
(8pts)

$$I_c = 0.98 \text{ mA}$$
 (3pts)

$$V_{R} = \frac{-1.4 \text{ (5pts)}}{}$$

EXAM 3 (100pts)


November 8, 2013

Name _____

ID ____

(26pts)

2.

For the given values of V_B below, estimate I_B , I_E , I_C and the collector voltage, V_C , assuming β very large, $|V_{BE}|=0.6V$ and $|V_{CE(sat)}|=0.2V$.

i)
$$V_B = 5.7V$$

$$I_B =$$
 (3pts)

$$I_E = 1.5 mA$$
 (3pts)

$$I_c = 1.5 mA$$
 (3pts)

$$V_c = \frac{\cancel{+3}\cancel{\lor}}{}$$
 (3pts)

ii)
$$V_B = 3V$$

$$I_{B} = 1.3V \qquad (4pts)$$

$$I_{E} = 3MA \qquad (3pts)$$

$$I_{C} = 1.7MA \qquad (3pts)$$

$$V = 3.4V \qquad (4pts)$$

EXAM 3 (100pts)

November 8, 2013

Name _____

ID ____

(25pts) 3

$$V_{BE} = 0.6V + 3V$$
 $B = 49$
 $V_{7} = 25mV$
 $0.5K$
 $0.5K$
 $0.5K$
 $0.5K$
 $0.5K$
 $0.5MA$
 $0.5MA$
 $0.5MA$

a) For the circuit shown, determine the dc voltage at the emitter, V_E .

$$-1 if-0.4$$

 $-2 if-0.6$
 $V_E = \frac{-0.8V}{(4pts)}$

b) Determine values for the small-signal parameters g_m , r_π and r_e . (Make simplifying assumptions)

$$g_m = 3.92 mS$$
 (3pts)

$$r_{\pi} = \frac{12.5 \text{K}}{(3 \text{pts})}$$

$$r_e = 250-1$$
 (3pts)

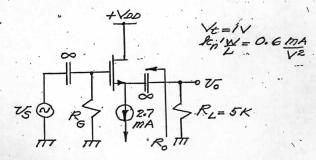
c) Draw the small-signal circuit using the "T" model for the transistors. (Label all circuit elements).

(6pts)

d) Derive and calculate the voltage gain $v_{\scriptscriptstyle 0}/_{v_{\scriptscriptstyle S}}$.

$$v_0/v_s = \frac{-30}{}$$
 (6pts)

EE311


EXAM 3	(100pts)
v -	

November 8, 2013

Name _____

ID ____

(24pts) 4.

a) For the circuit shown, determine the value of g_m and draw the small-signal equivalent circuit using the "T" model for the MOSFET. (Label all model and circuit elements)

(6pts)

b) Using the circuit in "a)" above, derive and calculate the voltage gain $A_V = \frac{vo}{vs}$.

$$A_{V} = 0.9 \qquad (6pts)$$

c) Using the circuit in a) above, derive and calculate the output resistance, $R_{\rm O}$, seen by the load $R_{\rm L}$.